Chapter 5.4: The Fundamental Theorem of Calculus

(the moment you have been all waiting for)

Mean Value Theorem Again

Let f be continuous on [a, b]. Then there exists a c in [a, b] such that

$$f(c) = \underbrace{\frac{1}{b-a} \int_{a}^{b} f(x) dx}_{\text{Average value of } f(x) \text{ on } [a,b]}$$

Idea: Use the Intermediate Value Theorem.

Let m be the minimum of f(x) on [a, b]. Let M be the maximum of f(x) on [a, b].

the maximum of f(x) on [a, b].

$$m(b-a) \le \int_a^b f(x) \ dx \le M(b-a),$$
$$m \le \frac{1}{b-a} \int_a^b f(x) \ dx \le M$$

and so the Intermediate Value Theorem yields the existence of the desired c.

Cumulative F(x)

Let f(x) be a continuous function on [a, b]. Define on [a, b] a new *cumulative* function F(x) as

$$F(x) = \int_{a}^{x} f(t) dt.$$

Relation of f(x) and F(X):

$$\frac{d}{dx}F(x) = f(x)$$

So F(x) is an antiderivative of f(x).

Fundamental Theorem of Calculus, Part I

Let f(x) be a continuous function on [a, b] and $F(x) = \int_a^x f(t) dt$. Then

$$F'(x) = \frac{d}{dx}F(x) = \frac{d}{dx}\left[\int_{a}^{x} f(t) dt\right] = f(x)$$

Goal:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

$$\frac{F(x+h)-F(x)}{h}=$$

$$=$$

$$=\frac{1}{h}\left[\int_{a}^{x+h}f(t)\ dt-\int_{a}^{x}f(t)\ dt\right]$$

$$= \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt + \int_{x}^{a} f(t) dt \right]$$

By the Mean Value Theorem, there exists $c \in [x, x + h]$

$$\frac{1}{h} \int_{-\infty}^{x+h} f(t) dt = f(c)$$

As $h \to 0$, we have that $c \to x$ and thus

$$=\frac{1}{h}\int_{a}^{x+h}f(t) dt$$

$$=\frac{1}{h}\int_{b}^{x+h}f(t) dt$$

$$F'(x) = \lim_{h \to 0}\frac{F(x+h) - F(x)}{h} = f(x).$$

Examples for $\frac{\frac{d}{dx} \left[\int_{a}^{x} f(t) \ dt \right] = f(x) }{ }$

$$\int_{-\infty}^{\infty} dx dx dx$$

$$\frac{d}{dx} \left(\int_{x}^{5} \cos(t^{3}) - 5 \, dt \right) = -\cos(x^{3}) + 5$$

$$\frac{d}{dx} \left(\int_{x}^{7} 2 \, dx \right) = 0$$

$$ightharpoonup \frac{d}{dx}\left(\int_{2}^{7}t^{2}\ dt\right)=0$$
 since we are taking a derivative of a constant

 $ightharpoonup \frac{d}{dx} \left(\int_1^{x^2} \cos(t) \ dt \right) = \text{ on the next slide}$

4.

Examples for
$$\boxed{\frac{\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x)}{}}$$

Think of $F(x) = \int_{1}^{x} \cos(t) dt$.

And we want $F(g(x)) = \int_1^{g(x)} \cos(t) dt$, where $g(x) = x^2$.

nd we want
$$F(g(x)) = \int_1^{g(x)} \cos x dx$$
 /e know $F'(x) = \cos(x)$ and the

rule.

We know $F'(x) = \cos(x)$ and then $F(g(x)) = F'(g(x)) \cdot g'(x)$ by the chain

 $\frac{d}{dx}\left(\int_{1}^{x^{2}}\cos(t)\ dt\right) = \cos(x^{2})\cdot 2x$

 $\frac{d}{dx}\left(\int_{a}^{g(x)}f(t)\ dt\right)=f(g(x))\cdot g'(x)$

 $\frac{d}{dt}\left(\int_{-\infty}^{3}\sin(t)\ dt + \int_{-\infty}^{5}\sin(t)\ dt\right) = -\sin(x^3)\cdot 3x^2 + 0$

Chain Rule

$$\frac{d}{dx}\left(\int_a^{g(x)}f(t)\ dt\right)=f(g(x))\cdot g'(x)$$

$$\frac{d}{dx}\left(\int_{g(x)}^{h(x)} f(t) dt\right) = \frac{d}{dx}\left(\int_{a}^{h(x)} f(t) dt + \int_{g(x)}^{a} f(t) dt\right)$$

$$= \frac{d}{dx}\left(\int_{a}^{h(x)} f(t) dt - \int_{a}^{g(x)} f(t) dt\right)$$

$$= f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x)$$

Example:

-,

 $\frac{d}{dx}\left(\int_{3x}^{e^x}\sin(t)\ dt\right) = \sin(e^x)\cdot e^x - \sin(3x)\cdot 3$

Fundamental Theorem of Calculus, Part II

Let F(x) be any antiderivative of f(x) on [a, b], then

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

Let $G(x) = \int_{c}^{x} f(t) dt$ for some $c \in [a, b]$. Notice F(x) + C = G(x), where C is a constant.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$= \int_{c}^{b} f(x) dx - \int_{c}^{a} f(x) dx$$

$$= G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a)$$

Examples for $\int_{a}^{b} f(x) dx = F(b) - F(a)$

$$\int_0^2 (2x+3) dx = \left[x^2 + 3x\right]_0^2 = (2^2 + 3 \cdot 2) - (0^2 + 3 \cdot 0) = 10$$

$$= 0 - (4 - 10) = +6$$

$$\int_{0}^{\pi} \cos(x) dx = [\sin(x)]_{0}^{\pi}$$

$$= \sin(\pi) - \sin(0) = 0$$

$$\int_{0}^{\pi} \frac{1 + z^{2}}{1 + z^{2}} dz = [\arctan(z)]_{0}^{\pi}$$

$$= \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Scary bonus:
$$\int_{-1}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -1 - \left(-\frac{1}{-1} \right) = -2 \text{ But } \frac{1}{x^2} > 0? \text{ What?!?}$$